电大数学思想方法全网最全答案:数学思想与方法电大

来源:其它报告 发布时间:2019-10-24 08:19:46 点击:

篇一:电大数学思想与方法分类整理试题答案

数学思想与方法分类整理试题答案

一、单项选择题

1.所谓类比,是指( ) B.由一类事物所具有的某种属性,可以推测与其类似的事物也具有该属性的一种推理方法

2.猜想具有两个显著特点( )。D.科学性与推测性

3.所谓数学模型方法是( )。A.利用数学模型解决问题的一般数学方法

4.数学模型具有( )特性。C.抽象性、准确性和演绎性、预测性

5.概括通常包括两种:经营概括和理论概括。而经验概括是从事实出发,以对个别事物所作的观察陈述为基础。上升为普遍的认识——(A.由对个体特性的认识上升为对个体所属的种的特性 )的认识。

6.三段论是演绎推理的主要形式,它由()三部分组成。D.大前提、小前提和结论

7.传统数学教学只注重———的传授,而忽略对知识发生过程中——的挖掘B.形式化数学知识,数学思想方法

8.特殊化方法是指在研究问题中,()的思想方法B.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

9.分类方法的原则是()D.不重复,无遗漏,标准同一,按层次逐步划分

10.数学模型可以分为三类()C.概念型,方法型,结构型

11.数学的第一次危机是由于出现了( c C.无理数(或厄) )而造成的。

12.算法大致可以分为(A.多项式算法和指数型算法 )两大类。

13.反驳反例是用____否定 的一种思维形式。( D.特殊 一般 )

14.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是(B.联想一类比一猜测 )。

15.归纳猜想是运用归纳法得到的猜想,它的思维步骤是(D.特例一

归纳一猜测 )。

16.传统数学教学只注重( A形式化)的数学知识传授,忽略了数学

思想方法的挖掘、整理、提炼。

17.所谓统一性,就是( C .部分与部分、部分与整体)之间的协调。

18.中国《九章算术》 的算法体系和古希腊《几何原本》____的体系在数学历史发展进程中争奇斗妍、交相辉映。(A以算为主)

19.所谓数学模型方法是(B利用数学模型解决问题的一般数学方法)。

20.公理化方法就是从( D初始概念和公理)出发,按照一定的规定定义出其它所有的概念,推导出其它一切命题的一种演绎方法。

21.概括通常包括两种:经验概括和理论概括。而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——( B.由对个体特性的认识上升为对个体所属的种的特性 )的认识。

22.算法大致可以分为(A )两大类。A.多项式算法和指数型算法

23.反驳反例是用否定_ ___的一种思维形式。(D.特殊一般)

24.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要

步骤是( C.联想一猜测一类比

25.归纳猜想是运用归纳法得到的猜想,它的思维步骤是(B.特例一归纳一猜测

26.传统数学教学只注重( D形式化)的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。

27.所谓统一性,就是( )之间的协调。C.部分与部分、部分与整体

28.数学的第二次危机是17世纪伴随牛顿和莱布尼兹创立( A微积分)而产生的。

29.我国《数学课程标准》(实验稿)的总体目标指出,数学知识包括 和 。(B.数学事实 数学活动经验)

30.所谓特殊化是指在研究问题时,( D )的思想方法。D.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

二、填空题(每空格3分,共30分)

1.数学的第一次危机是由于出现了无理数(或√虿)而造成的。

2.传统数学教学只注重 形式化 的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。

3.所谓数学模型方法是——利用数学模型解决问题的一般数学方法

4.菱形概念的抽象过程就是把一个新的特征:组邻边相等 ,加入到平行四边形概念中去,使平行四边形概念得到了强化。

5.在计算机时代,计算方法已成为与理论方法、实验方法并列的第三种科学方法。

6.反驳反例是用特殊否定一般 的一种思维形式。

7.化归方法包含的三个要素是 化归对象 化归目标 化归途径

三、判断题

1.随机现象就是杂乱无章的现象,无论是个别还是整体,其随机现象都没有规律性。(F )

2.数学学科的新发展——分形几何,其分形的思想就是将某一对象的细微部分放大后,其结构与原先的一样。(T )

3.我国中小学数学成绩举世公认,“高分必然产生高创造力”,我国中学生的科学测试成绩名列前茅。( F )

4.我国《数学课程标准》指出,数学知识就是“数与形以及演绎的知识”。( T)

5.数学基础知识与数学思想方法是数学教学的两条主线,而且是两条明线。( F )

6.数学抽象摆脱了客观事物的物质性质,从中抽取其数与形,因而数学抽象具有无物质性。( T)

7.数学公理化方法在其他学科也能起到作用,所以它是万能的( F )

8.数学模型具有预测性、准确性和演绎性,但不包括抽象性。(F )

9.猜想具有两个显著的特点:一定的科学性和一定的推测性。( T)

10.表层类比和深层类比其涵义是一样的。( F )

11.数学史上著名的“哥尼斯堡七桥问题”最后由欧拉用一笔画方法证明了其无解。( T)

12.分类方法具有两要素;母项与子项。( F)

13.算法具有无限性、不确定性与有效性。( F )

14.理论方法、实验方法和计算方法并列为三种科学方法。( T)

15.最早使用数学模型方法的当数中国古人。( T )

16.数学抽象摆脱了客观事物的物质性质,从中抽取其数与形,因而数学抽象具有无物质性。( T )

17.一个数学理论体系内的每一个命题都必须给出证明。(F )

18.反例在否定一个命题时并不具有特殊的威力。( F )

19.不可公度性的发现引发了第二次数学危机。( F )

20.最早使用数学模型方法的当数中国古人。( T)

四、简答题(每题10分,共30分)

1.为什么说数学模型方法是一种迂回式化归?

答:①运用数学模型方法解决问题时,不是直接求出实际问题的解,因为这样做往往是行不通的或者花费过分昂贵。②而是先将实际

问题化归为一个合适的数学模型,然后通过求数学模型的解间接求出原实际问题的解,走的是一条迂回的道路。③因此,我们说数学模型方法是一种迂回式化归。

2.特殊化在数学教学中的作用有哪些?

答:①利用特殊值(图形)解选择题。

②利用特殊化探求问题结论。

③利用特例检验一般结果。

④利用特殊化探索解题思路。

3.为什么数形结合方法在数学中有着非常广泛的应用?

答:①数学研究的是现实世界的数量关系和空间形式,而现实世界本身是同时兼备数与形两种属性的,既不存在有数无形的客观对象,也不存在有形无数的客观对象。②因此,在数学发展的进程中,数和形常常结合在一起,在内容上互相联系,在方法上互相渗透,在一定条件下互相转化。③充分运用数形结合方法解决数学问题,对于沟通代数、三角、几何各分支之间的联系,提高分析问题、解决问题的能力具有重要作用。

4.模型化的方法、开放性的归纳体系及算法化的内容之间的关系? 答:模型化的方法与开放性的归纳体系及算法化的内容之间是互相适应并且互相促进的。虽然,各个数学模型之间也有一定的联系,但是它们更具有相对独立性。一个数学模型的建立与其它数学模型之间并不存在逻辑依赖关系。正因为如此,所以可以根据需要随时从社会实践中提炼出新的数学模型。另一方面,由于运用模型化的方法研究数学,新的数学模型从何产生?只有寻找现实原型、立足于现实问题的研究,这就不可能产生封闭式的演绎体系。解决实际问题还提出了这样的要求:对由模型化方法求得的结果必须能够检验其正确性和合理性,为了能够求得实际可用的结果,于是算法化的内容也就应运而生。

5.算术与代数的解题方法基本思想有何区别?

答:区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。

6.简单说明社会科学数学化的主要原因?

答:第一,社会管理需要精确化的定量依据;第二,社会科学理论体系的发展需要精确化;第三,出现了一些适合研究社会历史现象的新的数学分支;第四,电子计算机的发展与应用。

7.简述类比的含义,数学中常用的类比有哪些?

答:①所谓类比,是指由一类事物所具有的某种属性,推测与其类似的事物也具有这种属性的一种推理方法。数学中常用的类似有表

层类比、深层类比、沟通类比。

8.常量数学应用的局限性是什么?

答:①在建立了太阳中心理论后,17世纪的人们面临了如何改进计算行星位置,以及如何解释地球上静止的物体保持不动、下降的物体还落在地球上等之类的问题。②这类问题的核心是物体的运动。面对这类带有运动特征的问题,人们已有的数学知识:算术、初等代数、初等几何和三解等构成的初等数学,显得无效。③由于初等数学都是以不变的数量(即常量)和固定的图形为其研究对象(因此这部分内容也称为常量数学)。运用这些知识可以有效地描述和解释相对稳定的事物和现象。可是,对于这些运动变化的事物和现象,它们显然无能为力。

9.简述代数解题方法的基本思想。

答:代数解题方法的基本思想是,①首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程;②然后通过对方程进行恒等变换求出未知数的值。

10.简述《九章算术》与<几何原本》两大著作的特点。

答:《几何原本》特点:封闭的演绎体系、抽象化的内容、公理化的方法:《九章算术》特点:开放的归纳体系、算法化的内容、模型化的方法。

11.试用框图表示用特殊化方法解决问题的一般过程并加以说明。

答: 这个框图告诉我们:

①若我们面对的问题A解决起来比较困难,可以先将A特殊化A’,因为A'与A相比较,外延变小,因此内涵势必增多,所以由A『所导出的结论B7,它包含的内涵一般也会比较多②把信息B7反馈到问题A中,就会为问题解决提供一些新的信息,再去推导结论B就会比较容易一些

③若解决问题A仍有困难,则可对A再次进行特殊化,进一步增加信息量,如此反复多次,最终推得结论B,使问题A得以解决。

12.简述类比的含义,数学中常用的类比有哪些?

答:①所谓类比,是指由一类事物所具有的某种属性,推测与其

篇二:电大数学思想方法考试题库(全)

《数学思想与方法》

——————————填空题————————

1古代数学大致可以分为两种不同的类型,一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(《九章算术》)为典范。

2、在数学中,建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得(《几何原本》)

3、《几何原本》所开创的(公理化)方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。

4、推动数学发展的原因主要有两个:(1)(实践的需要,(2)理论的需要)数学思想方法的几次突破就是这两种需要的结果。

5、变量数学产生的数学基础是(解析几何),标志是(微积分)

6、(数学基础知识和数学思想方法)是数学教学的两条主线。

7、随机现象的特点是(在一定条件下,看你发生某种结果,也困难不发生某种结果。

8、等腰三角形的抽象过程,就是把一个新的特征(两边相等)加入到三角形概念中去,使三角形概念得到强化。

9、学生理解或掌握数学思想方法的过程有如下三个主要阶段,(潜意识阶段、明朗化阶段、深刻理解阶段)

10、数学的统一性是客观世界统一性额反映,是数学中各个分支固有的内在联系的体现,它表现为(数学的各个分支相互渗透和相互结合)的趋势。

11、强抽象就是指通过(把一些新特征加入到某一概念中去而形成新概念的抽象过程。

12、菱形概念的抽象过程就是把一个新的特征(一组邻边相等)加入到平行四边形概念中去,使平行四边形概念得到了强化。

13、演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。

14、所谓类比是指(由一类事物所具有的某种属性,可以推测与其类似的事物也具有该属性的一种推理方法)常称这种方法为类比法,也称类比推理、

15、反例反驳的理论依据是形式逻辑的(矛盾律) 16、猜想具有两个显著特点:(具有一定的科学性、具有一定的推测性)

17、三段论是演绎推理的主要形式,三段论由(大前提、小前提、结论)三部份组成。

18、化归方法是指(把待解决的问题,通过某种转化过程,归结到一类已经能解决或较易解决的问题中,最终获得原问题的答的一种方法)

19、在化归过程中,应遵循的原则是(简单化原则、熟悉化原则、和谐化原则) 20、在计算机时代,(计算方法)已经成为与理论方法,实验方法并列的第三种科学方法。 21、算法具有下列特点(有限性、确定性、有效性) 22、算法大致可以分为(多项式算法和指数型算法) 23、匀速直线运动的数学模型是(一次函数) 24、所谓数学模型方法是(利用数学模型解决问题的一般数学方法) 25、分类必须遵循的原则是(不重复、无遗漏、标准同一。) 27、所谓特殊化是指在研究问题过程中(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。 28、面对一个问题,经过认真的观察和思考,通过归纳或类比提出猜想,然后从两个方面入手(演绎证明此猜想为真、或者寻找反例说明此猜想为假),并进一步修正或否定此猜想。 29、化归方法的三个要素是(化归对象、化归目标、化归途径) 30、根据学生掌握数学思想方法的过程由潜意识、明朗化、深刻理解三个阶段,课相应地将数学思想方法教学设计成(多次孕育、初步理解、简单应用)三个阶段。 31、(数学思想方法)是联系数学知识与数学能力地纽带,是数学科学地灵魂,它对发展学生的数学能力,通过学生的思维品质都具有十分重要的作用。 32、一个概括过程包括(比较、区分、扩张和分析)等几个主要环节。 33、算法的有效性是指(如果使用该算法从它的初始数据出发,能够得到这一问题的正确解决) 34、数学从研究对象大致可以分成两大类,(数量关系、空间形式) 35、《几何原本》所开创的公理化方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进它们的发展。 36、等腰三角形概念的抽象过程,就是把一个新的特征:(两边相等)加入到三角形概念中去,使三角形概念得到强化. 37、类比法是指,(由一类事物所具有的某种属性,可以推测与其类似的事物也具有这种属性)的一种推理方法. 38、面对一个问愿,经过认真的观察和思考,过归纳或者类比提出猜想,然后从两个方面人手;演绎证明此猜想为真;或者 (寻找反例说明此猜想为假)并且进一步修正成否定此猜想. 39、化归方法包含的三个要素是:化归对象、化归日标、化归途径。 40、数学的研究对象大致可以分成两类①研究数量关系,②研究空间形式。 41、一个科学的分类标准必须能够将需要分类的数学对象,不重复.无遗漏进行的划分。 42、所谓数形结合方法,就是在研究数学问题时,(由数思形,见形思数,数形结合考虑问题)的一种思想方法。

43、古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以

(《九章算术》)为典范。 44、不完全归纳法是根据(对某类事物中的部分对象的分析),作出关于该类事物的一般性结论的推理方法。 45、公理化的三条逻辑上的要求是(独立性、无矛盾性、完备性)。

46、《九章算术》系统地总结了先秦和东汉初年我国的数学成就,经过历代名家补充、修改、增订而逐步形成,现传世的《九章算术》是三国时期魏晋数学家(刘徽)注释的版本。

47、《几何原本》是一本极具生命力的经典著作,全书共十三卷475个命题,包括5个(公设)、5个(公理)。 48、数学思想方法教学主要有(多次孕育、初步理解、简单

应用)三个阶段。 49、化隐为显原则是数学思想方法教学原则之一,它的含义

就是把隐藏在数学知识背后的(数学思想方法)显示出来,使之明朗化,以达到教学目的。 50、在数学学科中人们常常把研究确定性现象数量规律的那

些数学分支称为确定数学,如代数、几何、方程、微积分等。但是确定数学无法定量地揭示(随机现象),它的这种局限性迫使数学家们建立一种专门分析(随机现象)的数学工具。这个数学

工具就是(概率理论和数理统计)。 51、小学生的思维特点是(具体形象思维)。

52、三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。

53、演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。

54、(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维

品质都具有十分重要的作用。 55、分类方法具有三个要素:(被划分的对象、划分后所得

的类的概念、划分的标准)。 56、数学研究的对象可以分为两类:一类是(研究数量关系

的),另一类是(研究空间形式的)。 57、所谓社会科学数学化就是指(数学向社会科学渗透),也就是运用(数学方法)来揭示社会现象的一般规律。

58、在古代的(游戏和赌博)活动中就有概率思想的雏形,但是作为一门学科则产生于17世纪中期前后,它的起源与一个

所谓的点数问题有关。 59、在数学中建立公理体系最早的是(几何学),而这方面

的代表著作是古希腊学者欧几里得的(《几何原本》)。 60、《九章算术》是世界上最早系统地叙述(分数)运算的

著作,它关于(负数)的论述也是世界上最早的。

61、数学知识与数学思想是数学教学的两条主线,(数学知识)是一条明线,它被写在教材中;(数学思想)则是一条暗线,需要教师挖掘、提炼并贯穿在教学过程中。

62、化归方法是将(待解决的问题)转化为已知问题。 63、公理方法是从尽可能少的初始概念和公理出发,应用严格的(逻辑推理),使一门数学构建成为演绎系统的一种方法

64、数学的第一次危机是由于出现了(不可公度性)而造成的。

65、数学猜想具有两个明显的特点:(科学性)与(推测性)。 66、所谓社会科学数学化就是指数学向(社会科学)的渗透,运用数学方法来揭示(社会现象)的一般规律。

67、深层类比又称实质性类比,它是通过(对被比较对象的处于相互依存的各种相似属性之间的多种因果关系的分析)而得到的类比。

68、概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——(由对个体特性的认识上升为对个体所属种的特性)的认识。

69、算法大致可以分为(多项式算法和指数型算法)两大类。 70、反驳反例是用(一个反例)否定(猜想)的一种思维形式。

71、类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是(联想-类比-猜测)。

35.归纳猜想是运用归纳法得道的猜想,它的思维步骤是(猜测-归纳-特例)。

72、传统数学教学只注重(形式化的)的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。

73、所谓统一性,就是(部分与部分、部分与整体)之间的协调。

74、中国《九章算术》(以算为主)的算法体系和古希腊《几何原本》(逻辑演绎)的体系在数学历史发展进程中争奇斗妍、交相辉映。

75、所谓数学模型方法是(利用数学模型解决问题的一般数学方法)。

76、所谓特殊化是指在研究问题时,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。

77、古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(中国《九章算术》)为典范。

78、数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为(数学的各个分支相互渗透和相互结合)的趋势。

79、在数学中建立公理体系最早的是几何学,而这方面的代

表著作是古希腊欧几里得的(《几何原本》)。

80、演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。

81、在化归过程中应遵循的原则是(简单化原则、熟悉化原则、和谐化原则)。

82、(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。

83、三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。

84、传统数学教学只注重(形式化的数学知识)的传授, 而忽略对知识发生过程中(数学思想方法)的挖掘。

85、特殊化方法是指在研究问题中,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。

86、分类方法的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。

87、数学模型可以分为三类:( 概念型、方法型、结构型)。 88、《几何原本》所开创的(公理化方法)方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。

89、一个概括过程包括(比较、区分、扩张、分析等几个主要环节)。

90、所谓类比,是指(由一类事物所具有的某种属性可以推测与其类似的事物也具有这种属性的一种推理方法);常称这种方法为类比法,也称类比推理。

91、猜想具有两个显著特点:(一是具有一定的科学性,二是具有一定的推测性)。

92、所谓数学模型方法是(利用数学模型解决问题的一般数学方法)。

93、数学模型具有(抽象性、准确性和演绎性、预测性)特性。

94、概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——(由对个体特性的认识上升为对个体所属种的特性)的认识。

95、三段论是演绎推理的主要形式。三段论由(大前提、小前提、结论)三部分组成。

96、化归方法是指,(数学家们把待解决的问题通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法)。

97、在计算机时代,(计算方法 )已成为与理论方法、实验方法并列的第三种科学方法。

98、算法具有下列特点:(有限性、确定性、有效性)。 99、化归方法的三个要素是:(化归对象、化归目标、化归

途径)。

100、根据学生掌握数学思想方法的过程有潜意识、明朗化、深刻理解三个阶段,可相应地将小学数学思想方法教学设计成(多次孕育、初步理解、简单应用)三个阶段。

101、一个概括过程包括(比较、区分、扩张、分析等几个主要环节)等几个主要环节。

102、古代数学大致可以分为两种不同的类型:一种是(崇尚逻辑推理),以《几何原本》为代表;一种是(长于计算和实际应用),以《九种算术》为典范。

103、《九章算术》思想方法的特点主要有(开放的归纳体系、算法化的内容、模型化的方法)。

104、初等代数的特点是(用字母符号来表示各种数,研究的对象主要是代数式的计算和方程的求解)。

——————————判断题——————————— 1、计算机是数学的创造物,又是数学的创造者。(√) 2、抽象得到的新概念与表达原来的对象的概念之间一定有种属关系(×)

3、一个数学理论体系内的每一个命题都必须给出证明(×) 4、九章算术不包括代数、几何内容(×)

5、即没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识(√)

6、数学模型方法在生物学。经济学、军事学等领域没应用(×)

7、在解决数学解时,往往需要综合运用多种数学思想方法才能取得效果(√)

8、如果某一类问题存在算法,并且构造出这个算法,就一定能求出该解的精确解。(×)

9、对同一数学对象,若选取不同的标准,可以得到不同的分类(√)

10、数学思想方法教学隶属于教学范畴,只要贯彻通常的数学教学原则,就可实现数学思想方法的教学目标(×)

11、由类比法推得的结论必然正确(×) 12、有时特殊情况能与一般情况等价(×)

13、完全归纳法实质上属于演绎推理的范畴(√) 14、古希腊的柏拉图曾在他的学校门口张榜声明,不懂几何的人不得入内,这是因为他的学校里所学习的课程要用到很多几何知识(×)

15、完全归纳法的一般推理形式是:设s=A1 A2 An ,由于A1 A2 An 具有性质P,因此推断几何s中的每一个对象都具有性质P(×)

16、抽象和概括是两种完全不同的方法 否

17、数学模型方法是物理学、工程学的专利,在生物学、经济学、军事学等领域投有应用.否

18、提出一个问题的猜想是解决这个问题的终结。何知识。 (× ) 68.尽管中西方对数学的贡献不同,但在数学思想方面是一(×) 43.完全归纳法的一般推理形式是: 致的。 ( ×)

19、一个数方法在生物学、经济题都必须给出证明。 (×)设S=具有性质P,因此推断集合S中的每一个对象都具有69.不可公度性的发现引发了第二次数学危机。 (×)20、数学中的许多问题都无法归结为寻找具体算法的问题。 性质P。( ×)70.中学生只需理解数学思想方法就能运用自如了,不需经(×) 44.《九章算术》是世界上最早系统地叙述分数运算的著作,历多次孕育阶段。(×)

21、计算是随着计算机的发明而被人们广泛应用的方法。它关于负数的论述也是世界上最早的。 ( √)71、数学模型方法应用面很窄。( × ) (×) 45.算术反映的是物体集合之间的函数关系。( × ) 72、数学思想方法教学隶属数学教学范畴,只要贯彻通常的

22、反例在否定一个命题时它并不具有特殊的威力。 (×) 46.《几何原本》是欧几里得独立创作的。( × ) 数学教学原则就可实现数学思想方法教学目标。 ( × ) 23、分类可使知识条理化、系统化。 (√) 47.《九章算术》系统地总结了先秦和东汉初年我国的数学 24、数学模型方法是近代才产生的。 (×)成就。 ( √) ———————单项选择题—————— 25、在小学数学教学中,本教材所涉及到的数学思想方法并不多见。 (否 ) 26、所谓特殊化是指在研究问题时,从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合的思想。(√) 27、数学思想方法教学隶属数学教学范畴,只要贯彻通常的数学教学原则就可实现数学思想方法教学目标。 (×) 28、数学基础知识和数学思想方法是数学教学的两条主线。 (√) 29、新颁发的《数学课程标准》中的特点之一“再创造”体现了我国数学课程改革与发展的新的理念。(√) 30、法国的布尔巴基学派利用数学结构实现了数学的统一。 (√) 31、由类比法推得的结论必然正确。 (×)32、计算机是数学的创造物,又是数学的创造者。 ( √) 33、抽象得到的新概念与表述原来的对象的概念之间一定有种属关系。(× ) 34、一个数学理论体系内的每一个命题都必须给出证明。( ×) 35、贯穿在整个数学发展历史过程中有两个思想,一是公理化思想,一是机械化思想。 (√ ) 36、在建立数学模型的过程中,不必经过数学抽象这一环节。 ( × ) 37.由类比法推得的结论必然正确。( × ) 38.有时特殊情况能与一般情况等价。 (√ )39.演绎的根本特点就是当它的前提为真时,结论必然为真。 (√ ) 40.抽象得到的新概念与表述原来的对象概念之间不一定有种属关系。( ×) 41、特殊化是研究共性中的个性的一种方法。 ( × ) 42.古希腊的柏拉图曾在他的学校门口张榜声明:不懂几何的人不得入内。这是因为他的学校里所学习的课程要用到很多几48.丢番图在其著作《算术》中用了许多符号,它标志着文字代数开始向简写代数转变,丢番图的《算术》是数学史上的里程碑。 (√ ) 49.解析几何的产生主要归功于笛卡儿和费尔马。( √) 50.英国的牛顿和德国的莱布尼兹分别以几何学和物理学为背景用无穷小量方法建立了微积分。 (√ ) 51.随机现象就是杂乱无章的现象,无论是个别还是整体,其随机现象都没有规律性。 (×) 52.数学学科的新发展——分形几何,其分形的思想就是将某一对象的细微部分放大后,其结构与原先的一样。(√)53.我国中小学数学成绩举世公认,“高分必然产生高创造力”,我国中学生的科学测试成绩名列前茅。 (×) 54.我国《数学课程标准》指出,数学知识就是“数与形以及演绎的知识”。 (√) 55.在数学基础知识与数学思想方法是数学教学的两条主线,而且是两条明线。(×) 56.数学抽象摆脱了客观事物的物质性质,从中抽取其数与形,因而数学抽象具有无物质性。 (√) 57.数学公理化方法在其他学科也能起到作用,所以它是万能的。 (×) 58.数学模型具有预测性、准确性和演绎性,但不包括抽象性。 (×) 59.猜想具有两个显著的特点:一定的科学性和一定的推测性。 (√) 60.表层类比和深层类比其涵义是一样的。(×) 61.数学史上著名的“哥尼斯堡七桥问题”最后由欧拉用一笔画方法解决了其无解。(√) 62.分类方法具有两要素:母项与子项。 (×) 63.算法具有无限性、不确定性与有效性。 (×)64.理论方法、实验方法和计算方法并列为三种科学方法。 (√) 65.最早使用数学模型方法的当数中国古人。(√) 66.化归方法是一种发现问题的方法。 (×)67.类比猜想的主要步骤是:猜测?联想? 类比。(×)1.算法的有效性是指( C )。P.122 A.如果使用该算法从它的初始数据出发,能够估计问题的

解答范围 B.如果使用该算法从它的初始数据出发,能够引出该问题的另一种求解方案

C.如果使用该算法从它的初始数据出发,能够得到这一问题的正确解 D.如果使用该算法从它的初始数据出发,能够大致猜想出

问题的答案 2.所谓数形结合方法,就是在研究数学问题时,(A )的

一种思想方法。P156 A.由数思形、见形思数、数形结合考虑问题

B.由数学公式解决图形问题 C.由已知图形联想数学公式解决数学问题

D.运用代数与几何解决问题 3.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以

( D )为典范。P1 A.阿拉伯的《论圆周》

B.印度的《太阳的知识》 C.希腊的《理想国》

D.中国的《九章算术》 4.数学的统一性是客观世界统一性的反映,是数学中各个

分支固有的内在联系的体现,它表现为( B )的趋势。P46 A.数学的各个分支相互独立并行发展

B.数学的各个分支相互渗透和相互结合 C.数学的各个分支呈现包容 D.数学的各个分支呈现互斥 5.学生理解或掌握数学思想方法的过程一般有三个主要阶

段:( B )。P197 A.了解阶段、掌握阶段、运用阶段

B.潜意识阶段、明朗化阶段、深刻理解阶段 C.感觉阶段、体会阶段、领悟阶段

D.同化阶段、迁移阶段、掌握阶段

6.在数学中建立公理体系最早的是几何学,而这方面的代表著作是(B )。P1

A.阿拉伯的《论圆周》

B.古希腊欧几里得的《几何原本》 C.希腊的《理想国》 D.中国的《九章算术》

7.随机现象的特点是(A )。P23

A.在一定条件下,可能发生某种结果,也可能不发生某种结果

B.在一定条件下,发生必然结果

C.在一定条件下,不可能发生某种特定的结果 D.在一定条件下,发生某种结果的概率微乎其微

8.演绎法与( D )被认为是理性思维中两种最重要的推理方法。P67

A.推理法 B.模型法 C.猜想法 D.归纳法

9.在化归过程中应遵循的原则是( A )。P105 A.简单化原则、熟悉化原则、和谐化原则 B.重复化原则、熟悉化原则、明朗化原则 C.简单化原则、熟悉化原则、重复化原则 D.熟悉化原则、和谐化原则、明朗化原则 10.(C )是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。P191

A.理论方法 B.实验方法 C.数学思想方法 D.计算方法

11.所谓类比,是指( B )。P75

A.由一类事物推测与另一类事物的相似的一种推理方法 B.由一类事物所具有的某种属性,可以推测与其类似的事物也具有该属性的一种推理方法

C.根据某种事物的属性知道另一种事物的属性的一种方法 D.两类事物具有可比性的一种推理方法 12.猜想具有两个显著特点:( D )。P73 A.推测性与准确性 B.科学性与精准性 C.准确性与必然性 D.科学性与推测性

13.所谓数学模型方法是( A )。P132 A.利用数学模型解决问题的一般数学方法 B.利用数学原理解决问题的一般数学方法

C.利用数学实验解决问题的一般数学方法 D.利用数学工具解决问题的一般数学方法 14.数学模型具有( C )特性。P131 A.抽象性、随机性和演绎性、预测性 B.抽象性、准确性和必然性、预测性 C.抽象性、准确性和演绎性、预测性 D.抽象性、准确性和演绎性、偶然性

15.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对

个别事物所作的观察陈述为基础,上升为普遍的认识——( A )的认识。P64

A.由对个体特性的认识上升为对个体所属的种的特性 B.由个体特性的认识上升为集体特性 C.由集体特性上升为个体特性 D.由属的特性上升为种的特性

16.三段论是演绎推理的主要形式,它由(D )三部分组成。P94

A.大结论、小结论和推理 B.小前提、小结论和推理 C.大前提、小结论和推理 D.大前提、小前提和结论

17.传统数学教学只注重(B )的传授, 而忽略对知识发生过程中( )的挖掘。P183

A.具体化数学知识,数学理论方法 B.形式化数学知识,数学思想方法 C.数学解题强化,数学思想方法 D.数学系统结构知识,数学思想方法 18.特殊化方法是指在研究问题中,( B )的思想方法。P164

A.运用特殊方法解决问题

B.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

C.从对象的一个给定范围出发,进而考虑某个包含于该范围的较小范围

D.从对象的一个给定区间出发,进而考虑某个包含于该区间的较小区间

19.分类方法的原则是( D )。P151 A.按种类逐步划分 B.按作用逐步划分 C.按性质逐步划分

D.不重复、无遗漏、标准同一、按层次逐步划分 20.数学模型可以分为三类:( C )。P131 A.人口模型、交通模型、生态模型 B.规划模型、生产模型、环境模型

C.概念型、方法型、结构型

D.初等模型、几何模型、图论模型

21.数学的第一次危机是由于出现了( C)而造成的。P82 Ap3)

B.整数比q

C.无理数(或2)

D.有理数无法表示正方形边长

22.算法大致可以分为( A )两大类。P128 A.多项式算法和指数型算法 B.对数型算法和指数型算法 C.三角函数型算法和指数型算法 D.单向式算法和多项式算法

23.反驳反例是用( D)否定( )的一种思维形式。P81

A.偶然 必然 B.随机 确定 C.常量 变量 D.特殊 一般

24.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是( B )。P78

A.猜测 ?类比? 联想

B.联想?? 类比? 猜测 C.类比 联想? 猜测 D.类比? 猜测? 联想

25.归纳猜想是运用归纳法得道的猜想,它的思维步骤是( D )。P74

A.归纳? 猜测? 特例 B.猜测?? 特例? 归纳 C.特例? 猜测? 归纳 D.特例 归纳? 猜测

26.传统数学教学只注重( A )的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。P183

A.形式化 B.科学化 C.系统化 D.模型化

27.所谓统一性,就是( C )之间的协调。P46 A.整体与整体 B.部分与部分

C.部分与部分、部分与整体 D.个别与集体

28.中国《九章算术》(A )的算法体系和古希腊《几何原本》()的体系在数学历史发展进程中争奇斗妍、交相辉

映。P1

A.以算为主 逻辑演绎 B.演绎为主 推理证明

C.模型计算为主 几何作画为主 D.模型计算 几何证明

29.所谓数学模型方法是( B )。P132 A.利用数学实验解决问题的一般数学方法 B.利用数学模型解决问题的一般数学方法 C.利用数学理论解决问题的一般数学方法 D.利用几何图形解决问题的一般数学方法

30.公理化方法就是从( D )出发,按照一定的规定定义出其它所有的概念,推导出其它一切命题的一种演绎方法。P95

A.一般定义和公理 B.特定定义和概念 C.特殊概念和公理 D.初始概念和公理

31.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——( B )的认识。P64

A.由对个体特性的认识抽象为对种的特性

B.由对个体特性的认识上升为对个体所属的种的特性 C.由对个体特性的认识上升为对个体所属的属的特性 D.由对个体特性的认识抽象为对个体所属的种的特性 32.算法大致可以分为( A )两大类。P128 A.多项式算法和指数型算法 B.单项式算法和对数型算法 C.单项式算法和指数型算法 D.多项式算法和对数型算法

33.反驳反例是用( D )否定()的一种思维形式。P81 A.一般 特殊B.实例 特例 C.特殊 特例D.特殊 一般

34.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是(B)。A.类比?联想 ?P78

猜测B.联想?类比?猜测

C.联想?猜测?类比D.猜测?类比?联想

35.归纳猜想是运用归纳法得道的猜想,它的思维步骤是( D )。P74

A.归纳??特例?猜测B.特例?归纳?猜测 C.特例猜测?归纳D.猜测?归纳?特例

36.传统数学教学只注重( D )的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。P183

A.理论化B.实践化C.模式化D.形式化

37.所谓统一性,就是( C )之间的协调。P46 A.部分与部分、整体与整体B.形式与内容

C.部分与部分、部分与整体 D.理论与实践

38.数学的第二次危机是17世纪伴随牛顿和莱布尼兹创立( A )而产生的。P83

A.微积分BC.数学悖论 D.无理数2

39.我国《数学课程标准》(实验稿)的总体目标指出,数学知识包括( B )和( )。P183

A.数学知识数学思想 B.数学事实数学活动经验 C.数学理论数学实践 D.数学模型数学活动经验

40.所谓特殊化是指在研究问题时,( D )的思想方法。P164

A.从对象的一个给定集合出发,进而考虑某个包含该集合的较大集合

B.从对象的一个给定范围出发,进而考虑该范围中某个较小的区间

C.从对象的一个给定数集出发,进而考虑某个包含于该数集的较小子数集

D.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

41.所谓数形结合方法,就是在研究数学问题时,( C )的一种思想方法。P156

A.由形思数、见数思质、数形质结合考虑问题 B.由数据、图形结合考虑问题

C.由数思形、见形思数、数形结合考虑问题 D.由数思形、见形思数、数形分离考虑问题 42.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于( A ),以《九章算术》为典范。P1

A.计算和实际应用B.模仿和度量C.推理和证明 D.计算和证明

43.不完全归纳法是根据( D ),作出关于该类事物的一般性结论的推理方法。P68

A.对某类事物的整体的分析 B.对某类事物单个对象的分析

C.对某类事物中的特定对象的分析 D.对某类事物中的部分对象的分析

44.公理化的三条逻辑上的要求是( D )。P37 A.依赖性、矛盾性、无备性 B.独立性、矛盾性、完备性 C.依赖性、无矛盾性、完备性 D.独立性、无矛盾性、完备性

45.《九章算术》系统地总结了先秦和东汉初年我国的数学成就,经过历代名家补充、修改、增订而逐步形成,现传世的《九章算术》是三国时期魏晋数学家( B )注释的版本。P6

A.张衡B.刘徽C.祖冲之D.贾宪 46.《几何原本》是一本极具生命力的经典著作,全书共十三卷475个命题,包括5个( C )、5个()。P2

A.方程定义 B.推理公理 C.公式公理 D.公式定义

47.数学思想方法教学主要有( B )三个阶段。P198 A.单次孕育、初步掌握、综合应用 B.多次孕育、初步理解、简单应用 C.多次孕育、深入理解、综合应用 D.单次孕育、深入理解、简单应用 48.化隐为显原则是数学思想方法教学原则之一,它的含义就是把隐藏在数学知识背后的( A )显示出来,使之明朗化,以达到教学目的。P199

A.数学思想方法 B.数学规律 C.数学定义 D.数学公式 49.在数学学科中人们常常把研究确定性现象数量规律的那些数学分支称为确定数学,如代数、几何、方程、微积分等。但是确定数学无法定量地揭示(),它的这种局限性迫使数学家们建立一种专门分析( A )的数学工具。这个数学工具就是()。P22

A.随机现象 随机现象 概率理论和数理统计 B.必然现象 必然现象 代数理论 C.变量规律 变量规律 数学分析 D.分形几何 分形几何 拓扑理论 50. 小学生的思维特点是( D )。P197

A.感性思维B.理性思维C.逻辑思维D.具体形象思维

篇三:电大2015《数学思想与方法》期末考试专用

《数学思想与方法》

——————————填空题————————

1古代数学大致可以分为两种不同的类型,一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(《九章算术》)为典范。

大致可以分为(多项式算法和指数型算法) 23、匀速直线运动的数学模型是(一次函数) 24、所谓数学模型方法是(利用数学模型解决问题的一般数学方法) 25、分类必须遵循的原则是(不重复、无遗漏、标准同一。) 27、所谓特殊化是指在研究问题过程中(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。 28、2、在数学中,建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得(《几何原本》) 3、《几何原本》所开创的(公理化)方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。 4、推动数学发展的原因主要有两个:(1)(实践的需要,(2)理论的需要)数学思想方法的几次突破就是这两种需要的结果。

5、变量数学产生的数学基础是(解析几何),标志是(微积分) 6、(数学基础知识和数学思想方法)是数学教学的两条主线。

7、随机现象的特点是(在一定条件下,看你发生某种结果,也困难不发生某种结果。

8、等腰三角形的抽象过程,就是把一个新的特征(两边相等)加入到三角形概念中去,使三角形概念得到强化。 9、学生理解或掌握数学思想方法的过程有如下三个主要阶段,(潜意识阶段、明朗化阶段、深刻理解阶段)

10、数学的统一性是客观世界统一性额反映,是数学中各个分支固有的内在联系的体现,它表现为(数学的各个分支相互渗透和相互结合)的趋势。

11、强抽象就是指通过(把一些新特征加入到某一概念中去而形成新概念的抽象过程。

12、菱形概念的抽象过程就是把一个新的特征(一组邻边相等)加入到平行四边形概念中去,使平行四边形概念得到了强化。

13、演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。

14、所谓类比是指(由一类事物所具有的某种属性,可以推测与其类似的事物也具有该属性的一种推理方法)常称这种方法为类比法,也称类比推理、

15、反例反驳的理论依据是形式逻辑的(矛盾律) 16、猜想具有两个显著特点:(具有一定的科学性、具有一定的推测性)

17、三段论是演绎推理的主要形式,三段论由(大前提、小前提、结论)三部份组成。

18、化归方法是指(把待解决的问题,通过某种转化过程,归结到一类已经能解决或较易解决的问题中,最终获得原问题的答的一种方法)

19、在化归过程中,应遵循的原则是(简单化原则、熟悉化原则、和谐化原则) 20、在计算机时代,(计算方法)已经成为与理论方法,实验方法并列的第三种科学方法。 21、算法具有下列特点(有限性、确定性、有效性) 22、算法面对一个问题,经过认真的观察和思考,通过归纳或类比提出猜想,然后从两个方面入手(演绎证明此猜想为真、或者寻找反例说明此猜想为假),并进一步修正或否定此猜想。 29、化归方法的三个要素是(化归对象、化归目标、化归途径) 30、根据学生掌握数学思想方法的过程由潜意识、明朗化、深刻理解三个阶段,课相应地将数学思想方法教学设计成(多次孕育、初步理解、简单应用)三个阶段。 31、(数学思想方法)是联系数学知识与数学能力地纽带,是数学科学地灵魂,它对发展学生的数学能力,通过学生的思维品质都具有十分重要的作用。 32、一个概括过程包括(比较、区分、扩张和分析)等几个主要环节。 33、算法的有效性是指(如果使用该算法从它的初始数据出发,能够得到这一问题的正确解决) 34、数学从研究对象大致可以分成两大类,(数量关系、空间形式) 35、《几何原本》所开创的公理化方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进它们的发展。 36、等腰三角形概念的抽象过程,就是把一个新的特征:(两边相等)加入到三角形概念中去,使三角形概念得到强化. 37、类比法是指,(由一类事物所具有的某种属性,可以推测与其类似的事物也具有这种属性)的一种推理方法. 38、面对一个问愿,经过认真的观察和思考,过归纳或者类比提出猜想,然后从两个方面人手;演绎证明此猜想为真;或者 (寻找反例说明此猜想为假)并且进一步修正成否定此猜想. 39、化归方法包含的三个要素是:化归对象、化归日标、化归途径。 40、数学的研究对象大致可以分成两类①研究数量关系,②研究空间形式。 41、一个科学的分类标准必须能够将需要分类的数学对象,不重复.无遗漏进行的划分。 42、所谓数形结合方法,就是在研究数学问题时,(由数思形,见形思数,数形结合考虑问题)的一种思想方法。

43、古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以 (《九章算术》)为典范。 44、不完全归纳法是根据(对某类事物中的部分对象的分析),作出关于该类事物的一般性结论的推理方法。 45、公理化的三条逻辑上的要求是(独立性、无矛盾性、完备性)。 46、《九章算术》系统地总结了先秦和东汉初年我国的数学成就,经过历代名家补充、修改、增订而逐步形成,现传世的《九章算术》是三国时期魏晋数学家(刘徽)注释的版本。 47、《几何原本》是一本极具生命力的经典著作,全书共十三卷475个命题,包括5个(公设)、5个(公理)。 48、数

学思想方法教学主要有(多次孕育、初步理解、简单

应用)三个阶段。 49、化隐为显原则是数学思想方法教学原则之一,它的含义

就是把隐藏在数学知识背后的(数学思想方法)显示出来,使之明朗化,以达到教学目的。 50、在数学学科中人们常常把研究确定性现象数量规律的那 些数学分支称为确定数学,如代数、几何、方程、微积分等。但是确定数学无法定量地揭示(随机现象),它的这种局限性迫使数学家们建立一种专门分析(随机现象)的数学工具。括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——(由对个体特性的认识上升为对个体所属种的特性)的认识。

69、算法大致可以分为(多项式算法和指数型算法)两大类。 70、反驳反例是用(一个反例)否定(猜想)的一种思维形式。

71、类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是(联想-类比-猜测)。 35.归纳猜想是运用归纳法得道的猜想,它的思维步骤是(猜这个数学

工具就是(概率理论和数理统计)。 51、小学生的思维特点是(具体形象思维)。 52、三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。

53、演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。 54、(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维

品质都具有十分重要的作用。 55、分类方法具有三个要素:(被划分的对象、划分后所得 的类的概念、划分的标准)。 56、数学研究的对象可以分为两类:一类是(研究数量关系 的),另一类是(研究空间形式的)。 57、所谓社会科学数学化就是指(数学向社会科学渗透),也就是运用(数学方法)来揭示社会现象的一般规律。

58、在古代的(游戏和赌博)活动中就有概率思想的雏形,但是作为一门学科则产生于17世纪中期前后,它的起源与一个

所谓的点数问题有关。 59、在数学中建立公理体系最早的是(几何学),而这方面

的代表著作是古希腊学者欧几里得的(《几何原本》)。 60、《九章算术》是世界上最早系统地叙述(分数)运算的著作,它关于(负数)的论述也是世界上最早的。

61、数学知识与数学思想是数学教学的两条主线,(数学知识)是一条明线,它被写在教材中;(数学思想)则是一条暗线,需要教师挖掘、提炼并贯穿在教学过程中。

62、化归方法是将(待解决的问题)转化为已知问题。 63、公理方法是从尽可能少的初始概念和公理出发,应用严格的(逻辑推理),使一门数学构建成为演绎系统的一种方法 64、数学的第一次危机是由于出现了(不可公度性)而造成的。

65、数学猜想具有两个明显的特点:(科学性)与(推测性)。 66、所谓社会科学数学化就是指数学向(社会科学)的渗透,运用数学方法来揭示(社会现象)的一般规律。 67、深层类比又称实质性类比,它是通过(对被比较对象的处于相互依存的各种相似属性之间的多种因果关系的分析)而得到的类比。

68、概括通常包括两种:经验概括和理论概括。 而经验概测-归纳-特例)。

72、传统数学教学只注重(形式化的)的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。

73、所谓统一性,就是(部分与部分、部分与整体)之间的协调。

74、中国《九章算术》(以算为主)的算法体系和古希腊《几何原本》(逻辑演绎)的体系在数学历史发展进程中争奇斗妍、交相辉映。

75、所谓数学模型方法是(利用数学模型解决问题的一般数学方法)。

76、所谓特殊化是指在研究问题时,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。

77、古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以(中国《九章算术》)为典范。

78、数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为(数学的各个分支相互渗透和相互结合)的趋势。

79、在数学中建立公理体系最早的是几何学,而这方面的代 表著作是古希腊欧几里得的(《几何原本》)。

80、演绎法与(归纳法)被认为是理性思维中两种最重要的推理方法。

81、在化归过程中应遵循的原则是(简单化原则、熟悉化原则、和谐化原则)。 82、(数学思想方法)是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。 83、三段论是演绎推理的主要形式,它由(大前提、小前提、结论)三部分组成。

84、传统数学教学只注重(形式化的数学知识)的传授, 而忽略对知识发生过程中(数学思想方法)的挖掘。 85、特殊化方法是指在研究问题中,(从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合)的思想方法。

86、分类方法的原则是(不重复、无遗漏、标准同一、按层次逐步划分)。 87、数学模型可以分为三类:( 概念型、方法型、结构型)。 88、《几何原本》所开创的(公理化方法)方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发

展。

89、一个概括过程包括(比较、区分、扩张、分析等几个主要环节)。

90、所谓类比,是指(由一类事物所具有的某种属性可以推测与其类似的事物也具有这种属性的一种推理方法);常称这种方法为类比法,也称类比推理。 91、猜想具有两个显著特点:(一是具有一定的科学性,二是具有一定的推测性)。

92、所谓数学模型方法是(利用数学模型解决问题的一般数学方法)。

93、数学模型具有(抽象性、准确性和演绎性、预测性)特性。

94、概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——(由对个体特性的认识上升为对个体所属种的特性)的认识。

95、三段论是演绎推理的主要形式。三段论由(大前提、小前提、结论)三部分组成。 96、化归方法是指,(数学家们把待解决的问题通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法)。 97、在计算机时代,(计算方法 )已成为与理论方法、实验方法并列的第三种科学方法。 98、算法具有下列特点:(有限性、确定性、有效性)。 99、化归方法的三个要素是:(化归对象、化归目标、化归 途径)。

100、根据学生掌握数学思想方法的过程有潜意识、明朗化、深刻理解三个阶段,可相应地将小学数学思想方法教学设计成(多次孕育、初步理解、简单应用)三个阶段。

101、一个概括过程包括(比较、区分、扩张、分析等几个主要环节)等几个主要环节。

102、古代数学大致可以分为两种不同的类型:一种是(崇尚逻辑推理),以《几何原本》为代表;一种是(长于计算和实际应用),以《九种算术》为典范。 103、《九章算术》思想方法的特点主要有(开放的归纳体系、算法化的内容、模型化的方法)。

104、初等代数的特点是(用字母符号来表示各种数,研究的对象主要是代数式的计算和方程的求解)。

——————————判断题——————————— 1、计算机是数学的创造物,又是数学的创造者。(√) 2、抽象得到的新概念与表达原来的对象的概念之间一定有种属关系(×) 3、一个数学理论体系内的每一个命题都必须给出证明(×) 4、九章算术不包括代数、几何内容(×)

5、即没有脱离数学知识的数学思想方法,也没有不包括数学思想方法的数学知识(√)

6、数学模型方法在生物学。经济学、军事学等领域没应用

(×)

7、在解决数学解时,往往需要综合运用多种数学思想方法才能取得效果(√)

8、如果某一类问题存在算法,并且构造出这个算法,就一定能求出该解的精确解。(×)

9、对同一数学对象,若选取不同的标准,可以得到不同的分类(√)

10、数学思想方法教学隶属于教学范畴,只要贯彻通常的数学教学原则,就可实现数学思想方法的教学目标(×) 11、由类比法推得的结论必然正确(×) 12、有时特殊情况能与一般情况等价(×)

13、完全归纳法实质上属于演绎推理的范畴(√)

14、古希腊的柏拉图曾在他的学校门口张榜声明,不懂几何的人不得入内,这是因为他的学校里所学习的课程要用到很多几何知识(×)

15、完全归纳法的一般推理形式是:设s=A1 A2 An ,由于A1 A2 An 具有性质P,因此推断几何s中的每一个对象都具有性质P(×)

16、抽象和概括是两种完全不同的方法 (×)

17、数学模型方法是物理学、工程学的专利,在生物学、经济学、军事学等领域投有应用.(×)

18、提出一个问题的猜想是解决这个问题的终结。 (×) 19、一个数方法在生物学、经济题都必须给出证明。(×)

20、数学中的许多问题都无法归结为寻找具体算法的问题。 (×)

21、计算是随着计算机的发明而被人们广泛应用的方法。(×)

22、反例在否定一个命题时它并不具有特殊的威力。 (×) 23分类可使知识条理化、系统化。(√)24、数学模型方法是近代才产生的。 (×)

25、在小学数学教学中,本教材所涉及到的数学思想方法并不多见。 (否 )

26、所谓特殊化是指在研究问题时,从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合的思想(√) 27、数学思想方法教学隶属数学教学范畴,只要贯彻通常的数学教学原则就可实现数学思想方法教学目标。 (×) 28、数学基础知识和数学思想方法是数学教学的两条主线。 (√)

29、新颁发的《数学课程标准》中的特点之一“再创造”体现了我国数学课程改革与发展的新的理念。(√)

30、法国的布尔巴基学派利用数学结构实现了数学的统一。 (√) 31、由类比法推得的结论必然(×) 32、计算机是数学的创造物,又是数学的创造者。 ( √)

33、抽象得到的新概念与表述原来的对象的概念之间一定有种属关系。(× )

34、一个数学理论体系内的每一个命题都必须给出证明。( ×)

35、贯穿在整个数学发展历史过程中有两个思想,一是公理化思想,一是机械化思想。 (√ )

36、在建立数学模型的过程中,不必经过数学抽象这一环节。( × )

38.有时特殊情况能与一般情况等价。 (√ )

线,而且是两条明线。(×)

56.数学抽象摆脱了客观事物的物质性质,从中抽取其数与形,因而数学抽象具有无物质性。 (√)

57.数学公理化方法在其他学科也能起到作用,所以它是万能的。 (×)

58.数学模型具有预测性、准确性和演绎性,但不包括抽象性。 (×)

59.猜想具有两个显著的特点:一定的科学性和一定的推测性。 (√)

60.表层类比和深层类比其涵义是一样的。 39.演绎的根本特点就是当它的前提为真时,结论必然为真。 (√ )

40.抽象得到的新概念与表述原来的对象概念之间不一定有种属关系。( ×)

41、特殊化是研究共性中的个性的一种方法。 ( × ) 42.古希腊的柏拉图曾在他的学校门口张榜声明:不懂几何的人不得入内。这是因为他的学校里所学习的课程要用到很多几何知识。 (× )

43.完全归纳法的一般推理形式是: 设S=具有性质P,因此推断集合S中的每一个对象都具有性质P。( ×) 44.《九章算术》是世界上最早系统地叙述分数运算的著作,它关于负数的论述也是世界上最早的。 ( √)

45.算术反映的是物体集合之间的函数关系。( × )46.《几何原本》是欧几里得独立创作的。( × )47.《九章算术》系统地总结了先秦和东汉初年我国的数学成就。 ( √)

48.丢番图在其著作《算术》中用了许多符号,它标志着文字代数开始向简写代数转变,丢番图的《算术》是数学史上的里程碑。 (√ )

49.解析几何的产生主要归功于笛卡儿和费尔马。( √)

50.英国的牛顿和德国的莱布尼兹分别以几何学和物理学为背景用无穷小量方法建立了微积分。 (√ )

51.随机现象就是杂乱无章的现象,无论是个别还是整体,其随机现象都没有规律性。 (×)

52.数学学科的新发展——分形几何,其分形的思想就是将某一对象的细微部分放大后,其结构与原先的一样。(√)

53.我国中小学数学成绩举世公认,“高分必然产生高创造力”,我国中学生的科学测试成绩名列前茅。 (×)

54.我国《数学课程标准》指出,数学知识就是“数与形以及演绎的知识”。 (√)

55.在数学基础知识与数学思想方法是数学教学的两条主(×)

61.数学史上著名的“哥尼斯堡七桥问题”最后由欧拉用一笔画方法解决了其无解。(√) 62.分类方法具有两要素:母项与子项。 (×) 63.算法具有无限性、不确定性与有效性。(×) 64.理论方法、实验方法和计算方法并列为三种科学方法。 (√)

65.最早使用数学模型方法的当数中国古人。(√)

66.化归方法是一种发现问题的方法。 (×) 67.类比猜想的主要步骤是:猜测?联想?类比。(×)

68.尽管中西方对数学的贡献不同,但在数学思想方面是一致的。 ( ×) 69.不可公度性的发现引发了第二次数学危机。 (×) 70.中学生只需理解数学思想方法就能运用自如了,不需经历多次孕育阶段。(×)

71、数学模型方法应用面很窄。( × )

72、数学思想方法教学隶属数学教学范畴,只要贯彻通常的 数学教学原则就可实现数学思想方法教学目标。 ( × )

———————单项选择题—————— 1.算法的有效性是指( C )。

C.如果使用该算法从它的初始数据出发,能够得到这一问题的正确解

2.所谓数形结合方法,就是在研究数学问题时,(A )的 一种思想方法。P156 A.由数思形、见形思数、数形结合考虑问题

3.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以( D )为典范。

D.中国的《九章算术》

4.数学的统一性是客观世界统一性的反映,是数学中各个 分支固有的内在联系的体现,它表现为( B )的趋势。 B.数学的各个分支相互渗透和相互结合

5.学生理解或掌握数学思想方法的过程一般有三个主要阶 段:( B )

B.潜意识阶段、明朗化阶段、深刻理解阶段

6.在数学中建立公理体系最早的是几何学,而这方面的代

表著作是(B )。P1

B.古希腊欧几里得的《几何原本》 7.随机现象的特点是(A )。P23

A.在一定条件下,可能发生某种结果,也可能不发生某种结果

8.演绎法与( D )被认为是理性思维中两种最重要的推理方法。P67D.归纳法

9.在化归过程中应遵循的原则是( A )。P105 A.简单化原则、熟悉化原则、和谐化原则 10.(C )是联系数学知识与数学能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。P191 C.数学思想方法

11.所谓类比,是指( B )。P75

B.由一类事物所具有的某种属性,可以推测与其类似的事物也具有该属性的一种推理方法 12.猜想具有两个显著特点:( D )。 D.科学性与推测性 13.所谓数学模型方法是( A )。P132 A.利用数学模型解决问题的一般数学方法

14.数学模型具有( C )特性。 C.抽象性、准确性和演绎性、预测性

15.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对 个别事物所作的观察陈述为基础,上升为普遍的认识——( A )的认识。P64

A.由对个体特性的认识上升为对个体所属的种的特性16.三段论是演绎推理的主要形式,它由(D )三部分组成。P94

D.大前提、小前提和结论

17.传统数学教学只注重(B )的传授, 而忽略对知识发生过程中( )的挖掘。P183

B.形式化数学知识,数学思想方法 18.特殊化方法是指在研究问题中,( B )的思想方法。P164

B.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

19.分类方法的原则是( D )。

D.不重复、无遗漏、标准同一、按层次逐步划分 20.数学模型可以分为三类:( C )。 C.概念型、方法型、结构型

21.数学的第一次危机是由于出现了( C)而造成的。 C.无理数(或2)

22.算法大致可以分为( A )两大类。P128 A.多项式算法和指数型算法

23.反驳反例是用( D)否定( )的一种思维形式。 D.特殊 一般

24.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是( B )。P78B.联想? 类比? 猜测

25.归纳猜想是运用归纳法得道的猜想,它的思维步骤是( D )。P74

D.特例? 归纳? 猜测

26.传统数学教学只注重( A )的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。P183 A.形式化

27.所谓统一性,就是( C )之间的协调。C.部分与部分、部分与整体

28.中国《九章算术》(A )的算法体系和古希腊《几何原本》()的体系在数学历史发展进程中争奇斗妍、交相辉映。

A.以算为主 逻辑演绎

29.所谓数学模型方法是( B )。B.利用数学模型解决问题的一般数学方法

30.公理化方法就是从( D )出发,按照一定的规定定义出其它所有的概念,推导出其它一切命题的一种演绎方法。D.初始概念和公理

31.概括通常包括两种:经验概括和理论概括。 而经验概括是从事实出发,以对个别事物所作的观察陈述为基础,上升为普遍的认识——( B )的认识。P64

B.由对个体特性的认识上升为对个体所属的种的特性32.算法大致可以分为( A )两大类。P128 A.多项式算法和指数型算法

33.反驳反例是用( D )否定()的一种思维形式。D.特殊 一般

34.类比联想是人们运用类比法获得猜想的一种思想方法,它的主要步骤是(B)。P78 B.联想?类比?猜测

35.归纳猜想是运用归纳法得道的猜想,它的思维步骤是( D )。P74

D.猜测?归纳?特例

36.传统数学教学只注重( D )的数学知识传授,忽略了数学思想方法的挖掘、整理、提炼。P183 D.形式化

37.所谓统一性,就是( C )之间的协调。C.部分与部分、部分与整体

38.数学的第二次危机是17世纪伴随牛顿和莱布尼兹创立( A )而产生的。P83 A.微积分

39.我国《数学课程标准》(实验稿)的总体目标指出,数学知识包括( B )和( )。P183 B.数学事实数学活动经验 40.所谓特殊化是指在研究问题时,( D )的思想方法。P164 D.从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合

41.所谓数形结合方法,就是在研究数学问题时,( C )的一种思想方法。P156

C.由数思形、见形思数、数形结合考虑问题

42.古代数学大体可分为两种不同的类型:一种是崇尚逻辑

《电大数学思想方法全网最全答案》推荐访问:

上一篇:爱的力学阅读答案_爱的力学txt
下一篇:最后一页

Copyright @ 2013 - 2018 77文库网_范文大全_应用文档_免费文档 All Rights Reserved

77文库网_范文大全_应用文档_免费文档 版权所有 湘ICP备11019447号-75